pydataaa.py 24.4 KB
Newer Older
haoyanbin's avatar
1  
haoyanbin committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
from pymysql import connect, cursors
import os
import requests
import json
from PIL import Image
import cv2
import numpy as np
import xlwt


dbconn = connect(
        host='rm-2zepcf8kag0aol0q48o.mysql.rds.aliyuncs.com',
        port=3306,
        user='ai_root',
        password='ai_root888',
        db='medical_platform',
        charset='utf8',
        cursorclass=cursors.DictCursor)

# dbconn = connect(
#     host=dbhost,
#     port=dbport,
#     user=dbuser,
#     password=dbpwd,
#     db=dbname,
#     charset=dbcharset,
#     cursorclass=cursors.DictCursor)
    
def query(sql):
    with dbconn.cursor() as cursor:
        cursor.execute(sql)
        dbconn.commit()
        return cursor.fetchall()
    
def get_files_in_directory(directory):
    file_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            file_paths.append(os.path.join(root, file))
    return file_paths
    

def copy_and_save_image(input_image_path, output_image_path, filename):
    try:
        os.makedirs(output_image_path, exist_ok=True)
        img = Image.open(input_image_path)
        img.copy().save(output_image_path+filename)
    except Exception as e:
        # 异常处理代码
        print(e)


def cp_img(name):

    i = 0
    size = 100
    while i <= 100:
        page = i * size
        i += 1
        
        sql_str = 'select m.de_instances_id, s.de_kind_id, m.de_position_name, m.de_system_name, m.de_organ_name, m.de_disease_name, m.de_symptom_name, i.png, i.is_boost, i.boost_png' \
                    ' from hos_database.de_instance_new_mark as m' \
                    ' left join hos_database.de_instances as i on m.de_instances_id = i.id ' \
                    ' left join hos_database.de_system as s on m.de_system_id = s.id ' \
                    ' where m.de_organ_name = "'+name+'"' \
                    ' limit ' + str(page) + ', ' + str(size)

        rows = query(sql_str)
        
        if len(rows) == 0 :
            break
        
        print(i)
        
        de_instance_id = ''
        for v3 in rows:
            de_instance_id += str(v3['de_instances_id'])+','
            
        de_instance_id = de_instance_id.strip(',')
        
        # examine_pass_status 审核状态 1 未完成 2 未通过 3 通过 4 待审核
        # instance_type 基础模块 1图像质量2 摆位 3 区域/器官 4 病症
        # valid_status 病症状态 1有病症 2 无病症 3 无效 4 未标记 5 不确定
        sql_str2 = 'select de_instance_id from medical_platform.dcm_image_list_instance' \
                    ' where de_instance_id in ('+de_instance_id+')' \
                    ' and instance_type = 4 '
        
        rows2 = query(sql_str2)
        
        for v2 in rows2:
            for v in rows:
                if v2['de_instance_id'] == v['de_instances_id']:
                    png = ''
                    
                    if v['is_boost'] == 1:
                        png = v['boost_png']
                    else:
                        png = v['png']
                        
                    species = ''
                    
                    if v['de_kind_id'] == 1:
                        species = 'cat'
                    else:
                        species = 'dog'
                        
                    # print(v['de_instances_id'], v['de_organ_name'], v['de_disease_name'], v['de_symptom_name'], jpeg, png, v['_value'])
                    
                    filename = png.split("/")[-1]
                
                    # download_image(png, "/disk0/data/images/disease/"+name+"/",filename)
                    input_path = "/disk0/data/images/positive/"+name+"/"+filename  # 输入图片文件路径
                    output_path = "/disk0/data/organ/"+species+"/"+v['de_position_name']+"/"+v['de_system_name']+"/"+v['de_organ_name']+"/" # 输出图片文件路径
                    copy_and_save_image(input_path, output_path,filename)
                    
                    output_path2 = "/disk0/data/symptom/"+species+"/"+v['de_position_name']+"/"+v['de_system_name']+"/"+v['de_symptom_name']+"/" # 输出图片文件路径
                    copy_and_save_image(input_path, output_path2,filename)


# 阳性
def img1(name):
    i = 0
    size = 100
    while i <= 100:
        page = i * size
        i += 1
        
        sql_str = 'select m.de_instances_id, m._value, m.de_organ_name, m.de_disease_name, m.de_symptom_name, i.jpeg, i.png, i.is_boost, i.boost_jpeg, i.boost_png' \
                    ' from hos_database.de_instance_new_mark as m' \
                    ' left join hos_database.de_instances as i on m.de_instances_id = i.id ' \
                    ' where m.de_disease_name = "'+name+'"' \
                    ' limit ' + str(page) + ', ' + str(size)

        rows = query(sql_str)
        
        if len(rows) == 0 :
            break
        
        print(i)
        
        de_instance_id = ''
        for v3 in rows:
            de_instance_id += str(v3['de_instances_id'])+','
            
        de_instance_id = de_instance_id.strip(',')
        
        # examine_pass_status 审核状态 1 未完成 2 未通过 3 通过 4 待审核
        # instance_type 基础模块 1图像质量2 摆位 3 区域/器官 4 病症
        # valid_status 病症状态 1有病症 2 无病症 3 无效 4 未标记 5 不确定
        sql_str2 = 'select de_instance_id from medical_platform.dcm_image_list_instance' \
                    ' where de_instance_id in ('+de_instance_id+')' \
                    ' and instance_type = 4 '
        
        rows2 = query(sql_str2)
        
        for v2 in rows2:
            for v in rows:
                if v2['de_instance_id'] == v['de_instances_id']:
                    jpeg = ''
                    png = ''
                    
                    if v['is_boost'] == 1:
                        jpeg = v['boost_jpeg']
                        png = v['boost_png']
                    else:
                        jpeg = v['jpeg']
                        png = v['png']
                        
                    # print(v['de_instances_id'], v['de_organ_name'], v['de_disease_name'], v['de_symptom_name'], jpeg, png, v['_value'])
                    
                    filename = png.split("/")[-1]
                
                    download_image(png, "/disk0/data/images/disease/"+name+"/",filename)
      
# 阴性  
def img2():
    i = 0
    size = 100
    while i <= 100:
        page = i * size
        i += 1
        
        # examine_pass_status 审核状态 1 未完成 2 未通过 3 通过 4 待审核
        # instance_type 基础模块 1图像质量2 摆位 3 区域/器官 4 病症
        # valid_status 病症状态 1有病症 2 无病症 3 无效 4 未标记 5 不确定
        sql_str = 'select de_instance_id from medical_platform.dcm_image_list_instance' \
            ' where instance_type = 4 and examine_pass_status = 3 and valid_status = 2' \
            ' order by id desc limit ' + str(page) + ', ' + str(size)

        rows = query(sql_str)
        
        if len(rows) == 0:
            break
        
        de_instance_id = ''
        for v2 in rows:
            de_instance_id += str(v2['de_instance_id'])+','
            
        de_instance_id = de_instance_id.strip(',')
    
        sql_str3 = 'select m.de_instances_id, m._value, m.de_organ_name, m.de_disease_name, m.de_symptom_name, i.ethnic_group, i.jpeg, i.png, i.is_boost, i.boost_jpeg, i.boost_png' \
                    ' from hos_database.de_instances as i' \
                    ' left join hos_database.de_instance_new_mark as m on m.de_instances_id = i.id ' \
                    ' where i.id in ('+de_instance_id+')'

        rows3 = query(sql_str3)
        
        print(i)
        if len(rows3) == 0:
            continue
        
        for v3 in rows3:
            
            if v3['de_instances_id'] is None:
                
                png = ''
                    
                if v3['is_boost'] == 1:
                    png = v3['boost_png']
                else:
                    png = v3['png']
                    
                # species = ''
                
                # if v3['ethnic_group'] == '猫':
                #     species = 'cat'
                # else:
                #     species = 'dog'
                    
                # print(v['de_instances_id'], v['de_organ_name'], v['de_disease_name'], v['de_symptom_name'], jpeg, png, v['_value'])
                
                filename = png.split("/")[-1]
            
                output_path = "/disk0/data/negative02/" # 输出图片文件路径
                download_image(png, output_path, filename)
                

def download_image(url, save_path, filename):
    try:
        # 发送HTTP GET请求
        response = requests.get(url)
        
        # 检查请求是否成功
        if response.status_code == 200:
            os.makedirs(save_path, exist_ok=True)
            # 以二进制写入文件
            with open(save_path+filename, 'wb') as file:
                file.write(response.content)
            print(f"Image successfully downloaded: {save_path}")
        else:
            print(f"Failed to retrieve image. Status code: {response.status_code}")
    except Exception as e:
        print(f"An error occurred: {e}")

# 单
def froi_img(image_path, output_path, filename, data):
    try:
        img = cv2.imread(image_path)
        height, width = img.shape[:2]
        image = np.zeros((height, width, 3), np.uint8)
        
        points = data['handles']['points']
        i = 0
        c = len(points)
        area = []
        while i < c: 

            area.append([int(points[i]['x']),int(points[i]['y'])])
            
            i+=1
            
            if i == c:
                area.append([int(points[0]['x']),int(points[0]['y'])])

        cv2.fillPoly(image,np.array([area]), color=(255, 255, 255))
        
        cv2.imwrite(output_path+filename, image)
    except Exception as e:
        # 异常处理代码
        print(e)


def froi(de_position_name, de_disease_name):
    i = 17
    size = 200
    while i <= 36:
        page = i * size
        i += 1
    
        sql_str3 = 'select m.de_instances_id, m._value, m.de_organ_id, m.de_organ_name, m.de_disease_id, m.de_disease_name, m.de_symptom_id, m.de_symptom_name, i.ethnic_group, i.jpeg, i.png, i.is_boost, i.boost_jpeg, i.boost_png' \
                    ' from hos_database.de_instances as i' \
                    ' left join hos_database.de_instance_new_mark as m on m.de_instances_id = i.id ' \
                    ' where m.de_position_name="'+de_position_name + '" and m.de_disease_name = "'+de_disease_name + '" and mark_type = "FreehandRoi"' \
                    ' limit ' + str(page) + ', ' + str(size)

        
        rows3 = query(sql_str3)
        
        print(i)
        if len(rows3) == 0:
            continue
        
        for v3 in rows3:
            
            png = ''
                    
            if v3['is_boost'] == 1:
                png = v3['boost_png']
            else:
                png = v3['png']
            
            filename = png.split("/")[-1]
                
            input_path = "/disk0/data/images/disease/"+de_disease_name+"/"+filename  # 输入图片文件路径
            
            output_path = "/disk0/data/disease_symptom/"+de_disease_name+"/"  # 输入图片文件路径
            
            output_path_ori = "/disk0/data/disease_symptom/"+de_disease_name+"_ori/"  # 输入图片文件路径
            
            data_froi = json.loads(v3['_value'])
            
            save_filename = str(v3['de_symptom_id'])+"_"+filename
            
            copy_and_save_image(input_path, output_path_ori, save_filename)
            
            froi_img(input_path, output_path, save_filename, data_froi)
            

# 多
def froi_img2(image_path, output_path, filename, data):
    try:
        img = cv2.imread(image_path)
        height, width = img.shape[:2]
        image = np.zeros((height, width, 3), np.uint8)
        
        for v in data:
            
            points = v['handles']['points']
            i = 0
            c = len(points)
            area = []
            while i < c: 

                area.append([int(points[i]['x']),int(points[i]['y'])])
                
                i+=1
                
                if i == c:
                    area.append([int(points[0]['x']),int(points[0]['y'])])

            cv2.fillPoly(image,np.array([area]), color=(255, 255, 255))
        
        cv2.imwrite(output_path+filename, image)
    except Exception as e:
        # 异常处理代码
        print(e)


def froi2():
    i = 44
    size = 100
    while i <= 100:
        page = i * size
        i += 1
        
        sql_str2 = "select de_instances_id from hos_database.de_instance_new_mark as m " \
                    " where m.de_organ_name in ('全肺','右肺','右肺中叶','右肺前叶','右肺后叶','左肺','左肺前叶前部','左肺前叶后部','左肺后叶') and mark_type = 'FreehandRoi'" \
                    " limit " + str(page) + ", " + str(size)

        
        rows2 = query(sql_str2)
        
        de_instance_id = ''
        for v2 in rows2:
            de_instance_id += str(v2['de_instances_id'])+','
            
        de_instance_id = de_instance_id.strip(',')
        
    
        sql_str3 = 'select m.de_instances_id, m._value, m.de_organ_id, m.de_organ_name, m.de_disease_id, m.de_disease_name, m.de_symptom_id, m.de_symptom_name, i.ethnic_group, i.jpeg, i.png, i.is_boost, i.boost_jpeg, i.boost_png' \
                    ' from hos_database.de_instances as i' \
                    ' left join hos_database.de_instance_new_mark as m on m.de_instances_id = i.id ' \
                    ' where m.de_instances_id in (' + de_instance_id + ') and mark_type = "FreehandRoi"'

        
        rows3 = query(sql_str3)
        
        print(i)
        if len(rows3) == 0:
            continue
        
        frois = []
        data_frois = {}
        
        for vv in rows3:
            
            if data_frois.get(vv['de_instances_id']) is None :
                frois.append(vv)
                data_frois[vv['de_instances_id']] = []
            
            data_frois[vv['de_instances_id']].append(json.loads(vv['_value']))

            
        for v3 in frois:
            
            png = ''
                    
            if v3['is_boost'] == 1:
                png = v3['boost_png']
            else:
                png = v3['png']
            
            filename = png.split("/")[-1]
                
            # input_path = "/disk0/data/images/disease/"+v3['de_disease_name']+"/"+filename  # 输入图片文件路径
            
            output_path = "/disk0/data/organ02/lungs/"  # 输入图片文件路径
            
            output_path_ori = "/disk0/data/organ02/lungs_ori/"  # 输入图片文件路径
            
            save_filename = str(v3['de_organ_id'])+"_"+filename
                        
            download_image(png, output_path_ori, save_filename)
            
            froi_img2(output_path_ori+save_filename, output_path, save_filename, data_frois[v3['de_instances_id']])
            
def froi22(name):
        
    sql_str = "select study_instance_uid, manufacturers_model_name from hos_database.dcm_list as d " \
                " where manufacturers_model_name ='"+name+"'" \
                " order by id desc limit 20 "

    
    rows = query(sql_str)
    u1 = r'https://viewer.ai-vpet.cn/viewer/'
    # u2 = r'?token=bXOBCY7M49NpTTGPHApDATRu%2FgY0PRp6ofB30I%2BfH3Zp%2BAZz4hoceaj9FDqy%2FGEA%2BTQvLmBGmMn0y0DPA67pVf6JfQR0LQm0qrBtuCPHHG%2F8x8di3C9Fu2sCwRXbyh93ftjY7%2Bi%2FDOQ6Ib4y1EHafg%3D%3D'
    u2 = r'?token=L4CCTl5V4p%2FoFxXzhkoI%2BYj8LOS3oyRLXVX3KSCE1vZM7RpBTQsmNVUBKKmAzHorWTmBoAN2z7wRnoczmB6HytITFLtw9FCFTmIkIBrpyJaI1QZS3uc6peZTEpmcyBhICCZ%2B5F0tZOhe78Be5DoYEw%3D%3D'
    print(name)
    print('\n')
    for v in rows:
        print(u1+v['study_instance_uid']+u2)
        print('\n')
            
            
def froi24():
    
    names2 = [
        '1.2.410.200067.100.1.202306132151100227.16179',
        '1.2.410.200067.100.1.202306111919530050.13775',
        '1.2.410.200067.100.1.202306101808590285.1618',
        '1.2.410.200067.100.1.202306221642290522.30621',
        '1.2.410.200067.100.1.202406211032310879.15457',
        '1.2.410.200067.100.1.202408021330260999.3052',
        '1.2.276.0.7230010.3.3.1.20240828000000000.859487075',
        '1.2.840.197608.1.15212033170821.1788',
        '1.2.840.197608.1.15212033170821.16',
        '172.115.1207.167.1218.1219.20240827204621.114',
        '1228.184.1232.1223.158.197.20240828173020.1',
        '1.2.156.112677.1000.101.20240830182741.1',
        '1.2.156.112677.1000.101.20240830180240.31'
    ]
    
    # encoding:设置编码,默认是ascii,一般设置为utf-8,可支持中文;
    #style_compression保持默认即可
    work_book = xlwt.Workbook(encoding='utf-8')
    
    # 创建一个sheet对象,相当于创建一个sheet页,填入sheet页的名称
    sheet_data = work_book.add_sheet('sheet1')
    
    # 向sheet页中添加数据:函数write,参数分别带入(行号,列号,填入的值),行和列从0开始。
    #其中还有一个参数style=Style.default_style,用于设置字体/单元格格式/对齐方式等,不设置会使用默认值。
    sheet_data.write(0,0,'医院名称') # 第1行第1列写入数据 此处先不用样式,后面介绍
    sheet_data.write(0,1,'联系电话')
    sheet_data.write(0,2,'医院码')
    sheet_data.write(0,3,'来源')
    sheet_data.write(0,4,'uid')
    sheet_data.write(0,5,'厂家')
    sheet_data.write(0,6,'url') 
    
    for k,v in enumerate(names2):
        
        sql_str = "select it.id, study_instance_uid, manufacturers_model_name, it._value "\
            " from hos_database.de_instance_tag as it " \
            " left join hos_database.de_instances as i on it.de_instances_id = i.id " \
            " left join hos_database.de_series as s on i.de_series_id = s.id " \
            " left join hos_database.de_study as t on s.de_study_id = t.id " \
            " where study_instance_uid ='"+v+"'" 

        rows = query(sql_str)
        
        sql_str2 = "select h._name, h.hospital_code, h.create_phone, h.is_bk "\
            " from hos_database.dcm_list as l " \
            " left join hos_database.hospital_main as h on l.hospital_code = h.hospital_code " \
            " where study_instance_uid ='"+v+"'" 

        rows2 = query(sql_str2)
        
        u1 = r'https://viewer.ai-vpet.cn/viewer/'
        # u2 = r'?token=bXOBCY7M49NpTTGPHApDATRu%2FgY0PRp6ofB30I%2BfH3Zp%2BAZz4hoceaj9FDqy%2FGEA%2BTQvLmBGmMn0y0DPA67pVf6JfQR0LQm0qrBtuCPHHG%2F8x8di3C9Fu2sCwRXbyh93ftjY7%2Bi%2FDOQ6Ib4y1EHafg%3D%3D'
        u2 = r'?token=g4BFXADwt8fWcqVddlQSo4iqx8O%2BWBJwtrg11nXHj3z0tsQX0ZaGNivn5jYHoMEZN4jltj5ZU%2BbP4ztqNbwYEZhTXOf0J0szHsf7a19lWJPIutkw4I3Gg%2B474FhY73CqQn0lv%2FmcJK9v37hyf24Z6g%3D%3D'

        data = json.loads(rows[0]['_value'])
        
        url = u1+rows[0]['study_instance_uid']+u2
        
        
        # 0 vpet  1 谛宝医生 2 必康
        is_bk = ''
        if rows2[0]['is_bk'] == 0 :
            is_bk = 'vpet'
        elif rows2[0]['is_bk'] == 1 :
            is_bk = '谛宝医生'
        elif rows2[0]['is_bk'] == 2 :
            is_bk = '必康'
        
        l = k+1
        
        sheet_data.write(l,0,rows2[0]['_name'])
        sheet_data.write(l,1,rows2[0]['create_phone'])
        sheet_data.write(l,2,rows2[0]['hospital_code'])
        sheet_data.write(l,3,is_bk)
        sheet_data.write(l,4,v)
        sheet_data.write(l,5,data['0008,0070']['Value'])
        sheet_data.write(l,6,url) 

    
    #保存为后缀为xls或者xlsx的excel表
    #保存为xlsx时,后续的设置样式不会生效 所以我们保存为xls后缀文件
    work_book.save('1.xls')
    
    
def froi31(image_path):
    try:
        img = cv2.imread(image_path)
        
        a = np.mean(img)
        
        print(a)
        
    except Exception as e:
        # 异常处理代码
        print(e)
            
                   
if __name__ == '__main__':
    de_disease_names = [
        "乳腺肿瘤",
        "会阴疝",
        "体表肿物",
        "便秘",
        "关节炎",
        "关节脱位",
        "其他",
        "前列腺结石",
        "前列腺肿大",
        "占位性病变",
        "右心房增大",
        "后腔静脉裂孔疝",
        "哮喘",
        "子宫蓄脓",
        "小肝征",
        "尿道结石",
        "尿闭",
        "巨大团块",
        "巨结肠",
        "幼龄动物",
        "幽门梗阻",
        "心源性肺水肿",
        "心脏增大",
        "支气管炎",
        "椎体脱位",
        "椎体错位",
        "横膈疝",
        "气管塌陷",
        "气胸",
        "犬未到达T12后缘",
        "猫未到达T13后缘",
        "皮下气肿",
        "皮下积气",
        "肋骨肋软骨矿化",
        "肝区占位性病变",
        "肝脏增大",
        "肝脏缩小",
        "肝脏肿大",
        "肠梗阻",
        "肠道异物",
        "肺不张",
        "肺大疱",
        "肺气肿",
        "肺水肿",
        "肺炎",
        "肾结石",
        "肾肿大",
        "肾萎缩",
        "肿瘤",
        "肿瘤转移性改变",
        "胃体积增大",
        "胃内异物",
        "胃后区体积增大",
        "胃扩张扭转",
        "胃扩张积气",
        "胃肠道穿孔",
        "胆囊壁矿化",
        "胆囊结石",
        "胸腔积液",
        "脾脏肿大",
        "腹壁疝",
        "腹股沟疝",
        "腹腔积气",
        "腹腔积液",
        "腹膜心包疝",
        "膀胱破裂",
        "膀胱结石",
        "输尿管结石",
        "锥体脱位",
        "食道异物",
        "食道积气",
        "食道积液",
        "食道积食",
        "食道裂孔疝",
        "骨折",
        "骨折后愈合",
        "骨质增生",
        "骨质疏松",
        "髋关节发育不良"
    ]
    
    de_organ_names = [
        "中腹区",
        "主动脉(弓)",
        "体表",
        "全心",
        "全肺",
        "前列腺区",
        "前腹区",
        "双侧皮下",
        "右侧皮下",
        "右心室",
        "右心房",
        "右肺",
        "右肺中叶",
        "右肺前叶",
        "右肺后叶",
        "后腔静脉",
        "后腹区",
        "子宫及其附件区",
        "子宫及附件区",
        "小肠",
        "尺骨",
        "尾椎",
        "尿道",
        "左侧皮下",
        "左心室",
        "左心房",
        "左心脏",
        "左肺",
        "左肺前叶前部",
        "左肺前叶后部",
        "左肺后叶",
        "左腿",
        "心前三角区",
        "心包",
        "心区",
        "心胸三角区",
        "掌骨",
        "桡骨",
        "椎隔三角区",
        "皮下",
        "结肠",
        "肋软骨",
        "肋骨",
        "肝脏",
        "股骨",
        "肱骨",
        "肺",
        "肾",
        "胃",
        "胆囊",
        "背侧皮下",
        "背部皮下",
        "胫骨",
        "胸椎",
        "胸骨",
        "脾脏",
        "腓骨",
        "腰椎",
        "腹侧皮下",
        "腹膜腔",
        "腹部皮下",
        "膀胱",
        "膝关节",
        "花瓣",
        "荐椎",
        "趾骨",
        "输尿管",
        "近贲门处",
        "骨盆区",
        "髋关节"
    ]

    # for v in de_organ_names:
    #     print(v)
    #     cp_img(v)
    
    # img2()
    
    # froi('胸部','肺炎')
    # froi2()
    
    names = [
        # 'Copyright(C) SUZHOUHEYI MEDICAL',
        # 'Copyright(C)E-COM',
        # 'CT Q560a',
        # 'DBC DR',
        # 'E-COM DR-2000 VET Digital Radiography Operating Console Software',
        # 'E-COM DR-2000 VET Digital Radiography Operating Console Software v6.0',
        # 'E-COM DR-2000 VET Êý×ÖXÉäÏßÊÞÓÃϵͳ¿ØÖÆÈí¼þ v6.0',
        # 'E-COM DR-2000 VET 数字X射线兽用系统控制软件 v6.0',
        # 'ELITE 2000',
        # 'Monet64',
        # 'Quantum CT Q560a',
        # 'Quantum CT T752',
        'RayNova DR',
        'Supernova C5',
        'Superpet',
        'VanGogh P8',
        'VanGogh SC8',
        'Xmaru Series'
    ]

    # for v in names2:
    #     
    froi24()
        
    
    # image_path = '/Users/haoyanbin/Downloads/28bdb020-05eb73c5-df89b21c-df391c83-5022fd3d.png'
    # image_path2 = '/Users/haoyanbin/Desktop/db0d2877-16a5787c-4c8d67c4-071097fc-deee3b7e.png'
    
    # froi31(image_path)
    # froi31(image_path2)